Synergistic Evaluation of Ionizing Radiation Shielding in Novel Lead-Free Alloys Using Geant4 MC toolkit
DOI:
https://doi.org/10.22399/ijasrar.47Keywords:
Alloys, Geant4 MC toolkit, Simulation, Phy-X, Photon shieldinAbstract
In this study, three lead-free alloys, CrSbSe3, HfSnS3, and ZrSnS3 were selected to investigate their photon shielding properties using Geant4 MC toolkit. The simulated mass attenuation coefficient (MAC) are then benchmarked with theoretical data obtained from Phy-X software demonstrating excellent agreement between the data set with percentage difference below 2% confirming the consistancy between Geant4 MC toolkit and theoretical data. From the simulated MAC, different key shielding parameters such as linear attenuation coefficient (LAC), half-value layer (HVL), mean-free path (MFP), transmission factor, and radiation protection efficiency (RPE) were derived and analyzed in the incident photon energy ranging from 15 keV up to 15 MeV. The findings indicates that all investigated lead-free alloys exhibited superior performance and are highly promising alternative to lead-based shielding materials, particularly in medical and industrial applications.
References
[1] Parker, H. M. O., & Joyce, M. J. (2015). The use of ionising radiation to image nuclear fuel: A review. Pro-gress in Nuclear Energy, 85, 297-318. https://doi.org/10.1016/j.pnucene.2015.06.006 DOI: https://doi.org/10.1016/j.pnucene.2015.06.006
[2] Jefferson, S., Roberts, R., Ley, F., & Rogers, F. (1968). INDUSTRIAL APPLICATIONS OF IONIZING RA-DIATIONS. In Elsevier eBooks (pp. 335–383). https://doi.org/10.1016/b978-1-4831-9958-0.50013-4 DOI: https://doi.org/10.1016/B978-1-4831-9958-0.50013-4
[3] Collin, S., Baskar, A., Geevarghese, D. M., Ali, M. N. V. S., Bahubali, P., Choudhary, R., Lvov, V., Tovar, G. I., Senatov, F., Koppala, S., & Swamiappan, S. (2022). Bioaccumulation of lead (Pb) and its effects in plants: A review. Journal of Hazardous Materials Letters, 3, 100064. https://doi.org/10.1016/j.hazl.2022.100064 DOI: https://doi.org/10.1016/j.hazl.2022.100064
[4] Hamad, M. K. (2026). Optical, photon interaction, and radiation shielding performance of Ho2O3-doped borate glasses modified with ZnO and CaO. Materials Research Bulletin, 194, 113785. https://doi.org/10.1016/j.materresbull.2025.113785 DOI: https://doi.org/10.1016/j.materresbull.2025.113785
[5] Hamad, M. K. (2025). Enhancing ionizing radiation shielding properties with PbO and ZnO substitutions in B2O3–BaO–TiO2 novel glass system. Radiation Physics and Chemistry, 229, 112499. https://doi.org/10.1016/j.radphyschem.2024.112499 DOI: https://doi.org/10.1016/j.radphyschem.2024.112499
[6] Hamad, M. K. (2025). Effect of WO3 on structural, optical, mechanical, and ionizing radiation shielding properties of borate-tellurite glass network. Ceramics International, 51(8), 9763-9771. https://doi.org/10.1016/j.ceramint.2024.12.407 DOI: https://doi.org/10.1016/j.ceramint.2024.12.407
[7] Alajerami, Y.S.M., Morsy, M.A., Mhareb, M.H.A. et al. Structural, optical, and radiation shielding features for a series of borate glassy system modified by molybdenum oxide. Eur. Phys. J. Plus 136, 583 (2021). https://doi.org/10.1140/epjp/s13360-021-01582-x DOI: https://doi.org/10.1140/epjp/s13360-021-01582-x
[8] Hamad, R., Hamad, M. K., Mhareb, M., Sayyed, M., Alajerami, Y., Dwaikat, N., Almessiere, M., Imheidat, M. A., & Ziq, K. A. (2022). Structural and radiation shielding features for BaSn1-xZnxO3 perovskite. Physica B: Condensed Matter, 638, 413925. https://doi.org/10.1016/j.physb.2022.413925 DOI: https://doi.org/10.1016/j.physb.2022.413925
[9] Hamad, M. K. (2025). On the ionizing radiation protection properties of different chromium-based alloys: A study with the Geant4 Monte Carlo toolkit. Annals of Nuclear Energy, 213, 111134. https://doi.org/10.1016/j.anucene.2024.111134 DOI: https://doi.org/10.1016/j.anucene.2024.111134
[10] Farrag, E. A., Hamad, M. K., Ali, A., Abdelmonem, A., & Al-Taani, H. (2024). Unveiling the shielding poten-tial: Exploring photon and neutron attenuation in a novel lead-free XCr2Se4 chalcogenide Spinals alloys with MCNP 4C code. Radiation Physics and Chemistry, 226, 112337. https://doi.org/10.1016/j.radphyschem.2024.112337 DOI: https://doi.org/10.1016/j.radphyschem.2024.112337
[11] Hamad, R.M., Hamad, M.K., Dwaikat, N. et al. Assessment of FexSe0.5Te0.5 alloy properties for ionizing radiation shielding applications: an experimental study. Appl. Phys. A 128, 574 (2022). https://doi.org/10.1007/s00339-022-05721-8 DOI: https://doi.org/10.1007/s00339-022-05721-8
[12] Hamad, M. K. (2023). Evaluation of photon shielding properties for new refractory tantalum-rich sulfides Ta9(XS3)2 alloys: A study with the MCNP-5. Annals of Nuclear Energy, 184, 109687. https://doi.org/10.1016/j.anucene.2023.109687 DOI: https://doi.org/10.1016/j.anucene.2023.109687
[13] Agostinelli, S., Allison, J., Amako, K., Apostolakis, J., Araujo, H., Arce, P., Asai, M., Axen, D., Banerjee, S., Barrand, G., Behner, F., Bellagamba, L., Boudreau, J., Broglia, L., Brunengo, A., Burkhardt, H., Chauvie, S., Chuma, J., Chytracek, R., . . . Zschiesche, D. (2003). Geant4—A simulation toolkit. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 506(3), 250-303. https://doi.org/10.1016/S0168-9002(03)01368-8 DOI: https://doi.org/10.1016/S0168-9002(03)01368-8
[14] Allison, J., Amako, K., Apostolakis, J., Arce, P., Asai, M., Aso, T., Bagli, E., Bagulya, A., Banerjee, S., Bar-rand, G., Beck, B., Bogdanov, A., Brandt, D., Brown, J., Burkhardt, H., Canal, P., Cano-Ott, D., Chauvie, S., Cho, K., Yoshida, H. (2016). Recent developments in Geant4. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 835, 186-225. https://doi.org/10.1016/j.nima.2016.06.125 DOI: https://doi.org/10.1016/j.nima.2016.06.125
[15] Şakar, E., Özpolat, Ö. F., Alım, B., Sayyed, M., & Kurudirek, M. (2019). Phy-X / PSD: Development of a user friendly online software for calculation of parameters relevant to radiation shielding and dosimetry. Radiation Physics and Chemistry, 166, 108496. https://doi.org/10.1016/j.radphyschem.2019.108496 DOI: https://doi.org/10.1016/j.radphyschem.2019.108496
[16] Lu, Y., Yu, W., Zhang, Y., Zhang, J., Chen, C., Dai, Y., Hou, X., Dong, Z., Yang, L., Fang, L., Huang, L., Lin, S., Wang, J., Wang, J., Li, J., & Zhang, K. (2023). Synthesis and Broadband Photodetection of a P‐Type 1D Van der Waals Semiconductor HfSnS3. Small, 19(44), e2303903. https://doi.org/10.1002/smll.202303903 DOI: https://doi.org/10.1002/smll.202303903
[17] Jain, A., Ong, S. P., Hautier, G., Chen, W., Richards, W. D., Dacek, S., Cholia, S., Gunter, D., Skinner, D., Ceder, G., & Persson, K. A. (2013). Commentary: The Materials Project: A materials genome approach to accelerating materials innovation. APL Materials, 1(1). https://doi.org/10.1063/1.4812323 DOI: https://doi.org/10.1063/1.4812323
[18] Data retrieved from the Materials Project for CrSbSe3 (mp-15236) from database version v2025.09.25. https://doi.org/10.17188/1191071
[19] Data retrieved from the Materials Project for HfSnS3 (mp-8725) from database version v2025.09.25. https://doi.org/10.17188/1312614
[20] Data retrieved from the Materials Project for ZrSnS3 (mp-17324) from database version v2025.09.25. https://doi.org/10.17188/1192450
[21] Al-Sarray, E., Akkurt, İ., Günoğlu, K., Evcın, A., & Bezır, N. (2017). Radiation shielding properties of some composite panel. Acta Physica Polonica A, 132(3), 490–492. https://doi.org/10.12693/aphyspola.132.490 DOI: https://doi.org/10.12693/APhysPolA.132.490
[22] Davraz, M., Pehlıvanoğlu, H., Kilinçarslan, Ş., & Akkurt, İ. (2017). Determination of Radiation Shielding of Concrete Produced from Portland Cement with Boron Additives. Acta Physica Polonica A, 132(3), 702–704. https://doi.org/10.12693/aphyspola.132.702 DOI: https://doi.org/10.12693/APhysPolA.132.702
[23] Özavci, S., & Çetın, B. (2017). Radiation shielding properties of mortars and plasters used in historical buildings. Acta Physica Polonica A, 132(3–II), 986–987. https://doi.org/10.12693/aphyspola.132.986 DOI: https://doi.org/10.12693/APhysPolA.132.986
[24] Çetın, B., Yalçin, Ş., Aktas, B., & Albaşkara, M. (2017). Investigation of Radiation Shielding Properties of Soda-Lime-Silica Glasses Doped with Different Food Materials. Acta Physica Polonica A, 132(3–II), 988–990. https://doi.org/10.12693/aphyspola.132.988 DOI: https://doi.org/10.12693/APhysPolA.132.988
[25] Evcın, O., Evcın, A., Bezır, N., Akkurt, İ., Günoğlu, K., & Ersoy, B. (2017). Production of barite and bo-roncarbide doped radiation shielding polymer composite panels. Acta Physica Polonica A, 132(3–II), 1145–1148. https://doi.org/10.12693/aphyspola.132.1145 DOI: https://doi.org/10.12693/APhysPolA.132.1145
[26] Kilinçarslan, Ş., Üncü, İ., Akkurt, İ., Günoğlu, K., Akarslan, F., & Coşkunsu, S. (2017). Determination of Radiation Shielding Properties of Fabrics using Image Processing Method. Acta Physica Polonica A, 132(3–II), 1171–1172. https://doi.org/10.12693/aphyspola.132.1171 DOI: https://doi.org/10.12693/APhysPolA.132.1171
[27] Yaghi, M. A., Sayyed, M., Mhareb, M., Bennal, A., & Hamad, M. K. (2026). Radiation shielding and me-chanical performance of lead-free novel glasses: Insights from Geant4 Monte Carlo simulations. Radiation Physics and Chemistry, 239, 113335. https://doi.org/10.1016/j.radphyschem.2025.113335 DOI: https://doi.org/10.1016/j.radphyschem.2025.113335
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 International Journal of Applied Sciences and Radiation Research

This work is licensed under a Creative Commons Attribution 4.0 International License.