Radiation Shielding Properties of recycled waste glass color doped powder cement pastes

Authors

  • Nuray Kutu

DOI:

https://doi.org/10.22399/ijasrar.55

Keywords:

Gamma-ray shielding, glass, cement

Abstract

In the present study, the gamma-ray shielding performance of cement (CEM), green, brown, and transparent glass materials was systematically investigated over the photon energy range of 0.015–15 MeV. Key radiation attenuation parameters including mean free path (MFP), half-value layer (HVL), tenth-value layer (TVL), effective atomic number (Zeff), and radiation protection efficiency (R) were evaluated using the Phy-X/PSD computational platform. The obtained results demonstrate a strong dependence of shielding parameters on photon energy, governed by dominant interaction mechanisms such as photoelectric absorption, Compton scattering, and pair production. Cement exhibited the lowest MFP, HVL, and TVL values across the studied energy range, indicating superior shielding efficiency, while colored glass samples showed competitive attenuation performance, particularly at intermediate photon energies. These findings suggest that cement and glass-based materials can serve as effective and practical alternatives for gamma-ray shielding applications.

References

[1]. Hubbell, J. H., & Seltzer, S. M. (1995). Tables of X-ray mass attenuation coefficients and mass energy-absorption coefficients. National Institute of Standards and Technology.

[2]. Şakar, E., Özpolat, Ö. F., Alım, B., Sayyed, M. I., & Karabulut, A. (2020). Phy-X/PSD: Development of a user-friendly online software for calculation of parameters relevant to radiation shielding and dosimetry. Radiation Physics and Chemistry, 166, 108496. https://doi.org/10.1016/j.radphyschem.2019.108496 DOI: https://doi.org/10.1016/j.radphyschem.2019.108496

[3]. National Institute of Standards and Technology. (2026). XCOM: Photon cross sections database. https://physics.nist.gov/xcom

[4]. Berger, M. J., & Hubbell, J. H. (1987). XCOM: Photon cross sections on a personal computer (NBSIR 87-3597). National Bureau of Standards. DOI: https://doi.org/10.2172/6016002

[5]. Gerward, L., Guilbert, N., Jensen, K. B., & Levring, H. (2004). WinXCom—A program for calculating X-ray attenuation coefficients. Radiation Physics and Chemistry, 71, 653–654. https://doi.org/10.1016/j.radphyschem.2004.04.040 DOI: https://doi.org/10.1016/j.radphyschem.2004.04.040

[6]. Gerward, L., Guilbert, N., Jensen, K. B., & Levring, H. (2001). X-ray absorption in matter: Reengineering XCOM. Radiation Physics and Chemistry, 60, 23–24. https://doi.org/10.1016/S0969-806X(00)00350-1 DOI: https://doi.org/10.1016/S0969-806X(00)00324-8

[7]. Akkurt, I. (2009). Effective atomic numbers for Fe–Mn alloy using transmission experiment. Chinese Physics B, 18, 4217–4221. https://doi.org/10.1088/1674-1056/18/10/046 DOI: https://doi.org/10.1088/1674-1056/18/10/046

[8]. Singh, V. P., & Badiger, N. M. (2012). Gamma-ray attenuation and shielding parameters of bismuth borate glasses. Nuclear Instruments and Methods in Physics Research Section B, 274, 68–73. https://doi.org/10.1016/j.nimb.2011.12.015 DOI: https://doi.org/10.1016/j.nimb.2011.12.015

[9]. El-Khayatt, A. M. (2011). Attenuation coefficients of glass systems containing heavy elements. Annals of Nuclear Energy, 38, 218–224. https://doi.org/10.1016/j.anucene.2010.09.010 DOI: https://doi.org/10.1016/j.anucene.2010.08.003

[10]. Bashter, I. I. (1997). Calculation of radiation attenuation coefficients for shielding concretes. Annals of Nuclear Energy, 24, 1389–1401. https://doi.org/10.1016/S0306-4549(97)00003-0 DOI: https://doi.org/10.1016/S0306-4549(97)00003-0

[11]. Kurudirek, M. (2017). Effective atomic numbers and photon buildup factors in some shielding materials. Radiation Physics and Chemistry, 140, 136–144. https://doi.org/10.1016/j.radphyschem.2017.02.018 DOI: https://doi.org/10.1016/j.radphyschem.2017.02.018

[12]. Oto, B., Yılmaz, M., Kavaz, E., & Karaman, M. (2018). Gamma-ray attenuation properties of concrete and building materials. Progress in Nuclear Energy, 109, 94–102. https://doi.org/10.1016/j.pnucene.2018.05.006 DOI: https://doi.org/10.1016/j.pnucene.2018.05.006

[13]. Rammah, Y. S., El-Agawany, F. I., & Sayyed, M. I. (2020). Evaluation of gamma-ray shielding parameters for phosphate glasses. Ceramics International, 46, 20835–20842. https://doi.org/10.1016/j.ceramint.2020.05.190 DOI: https://doi.org/10.1016/j.ceramint.2020.05.190

[14]. Issa, S. A. M., Sayyed, M. I., Kurudirek, M., & Dong, M. G. (2018). Radiation shielding and optical properties of heavy metal oxide glasses. Ceramics International, 44, 18635–18641. https://doi.org/10.1016/j.ceramint.2018.07.028 DOI: https://doi.org/10.1016/j.ceramint.2018.07.028

[15]. Al-Buriahi, M. S., Singh, V. P., Tonguc, B. T., & Sayyed, M. I. (2020). Radiation shielding performance of tellurite/borate glass systems. Materials Chemistry and Physics, 243, 122640. https://doi.org/10.1016/j.matchemphys.2019.122640

[16]. Sayyed, M. I., Lakshminarayana, G., Kityk, I. V., Mahdi, M. A., & Dong, M. G. (2017). Shielding features of lead-free bismuth glass systems. Journal of Alloys and Compounds, 695, 3191–3199. https://doi.org/10.1016/j.jallcom.2016.11.102 DOI: https://doi.org/10.1016/j.jallcom.2016.11.102

[17]. Al-Hadeethi, Y., & Sayyed, M. I. (2019). Effect of composition on gamma-ray shielding of glass materials. Applied Radiation and Isotopes, 150, 114–120. https://doi.org/10.1016/j.apradiso.2019.04.040 DOI: https://doi.org/10.1016/j.apradiso.2019.04.040

[18]. Korkut, T. (2012). Photon interaction parameters and shielding performance of building materials. Radiation Physics and Chemistry, 81, 202–207. https://doi.org/10.1016/j.radphyschem.2011.10.008 DOI: https://doi.org/10.1016/j.radphyschem.2011.10.008

[19]. Manohara, S. R., & Hanagodimath, S. M. (2007). Studies on effective atomic numbers and attenuation in composite materials. Nuclear Instruments and Methods in Physics Research Section B, 258, 321–328. https://doi.org/10.1016/j.nimb.2007.02.095 DOI: https://doi.org/10.1016/j.nimb.2007.02.101

[20]. International Atomic Energy Agency. (2014). Radiation protection and safety of radiation sources: International basic safety standards (GSR Part 3).

[21]. International Commission on Radiological Protection. (2007). The 2007 recommendations of the ICRP (Publication 103).

[22]. United Nations Scientific Committee on the Effects of Atomic Radiation. (2020). Sources, effects and risks of ionizing radiation. United Nations.

[23]. National Council on Radiation Protection and Measurements. (2004). Structural shielding design and evaluation for medical use of X rays and gamma rays (NCRP Report No. 147).

[24]. Akkurt, I., Basyigit, C., Kilincarslan, S., & Mavi, B. (2006). The shielding of gamma rays by concretes produced with barite. Progress in Nuclear Energy, 48, 397–404. https://doi.org/10.1016/j.pnucene.2005.09.002 DOI: https://doi.org/10.1016/j.pnucene.2005.09.002

[25]. Mahmoud, K. A., & Sayyed, M. I. (2019). Gamma-ray shielding properties of cement-based materials. Construction and Building Materials, 215, 970–977. https://doi.org/10.1016/j.conbuildmat.2019.04.177 DOI: https://doi.org/10.1016/j.conbuildmat.2019.04.177

[26]. Tekin, H. O. (2017). Monte Carlo evaluation of photon shielding parameters. Radiation Physics and Chemistry, 139, 1–7. https://doi.org/10.1016/j.radphyschem.2017.01.020 DOI: https://doi.org/10.1016/j.radphyschem.2017.01.020

[27]. Kaky, K. M., & Sayyed, M. I. (2021). Assessment of radiation shielding properties of glass systems. Silicon, 13, 985–993. https://doi.org/10.1007/s12633-020-00457-5

[28]. Singh, K., Singh, H., Sharma, V., Nathuram, R., Khanna, A., Kumar, R., & Bhatti, S. S. (2002). Gamma-ray attenuation coefficients in bismuth borate glasses. Nuclear Instruments and Methods in Physics Research Section B, 194, 1–6. https://doi.org/10.1016/S0168-583X(02)00720-0 DOI: https://doi.org/10.1016/S0168-583X(02)00498-6

[29]. El-Mallawany, R. (2013). Tellurite glasses handbook: Physical properties and data. CRC Press. https://doi.org/10.1201/b16183 DOI: https://doi.org/10.1201/9781420042085

[30]. Rammah, Y. S., El-Agawany, F. I., & Sayyed, M. I. (2018). Radiation shielding characteristics of lead-free borate glasses. Journal of Non-Crystalline Solids, 503–504, 224–230. https://doi.org/10.1016/j.jnoncrysol.2018.09.024 DOI: https://doi.org/10.1016/j.jnoncrysol.2018.09.024

Downloads

Published

2026-01-26

How to Cite

Nuray Kutu. (2026). Radiation Shielding Properties of recycled waste glass color doped powder cement pastes. International Journal of Applied Sciences and Radiation Research , 3(1). https://doi.org/10.22399/ijasrar.55

Issue

Section

Articles

Most read articles by the same author(s)