Determination of Radiation Dose Level Exposed to Thyroid in C-Arm Scopy

Authors

Keywords:

C-arm Scopy, Alderson Rando Phantom (ART), TLD, Radiation

Abstract

Abstract:

This study aims to evaluate the radiation dose impacting thyroid tissue during C-arm fluoroscopy using the Alderson Rando phantom and thermoluminescent dosimeters (TLD-100). Given the sensitivity of the thyroid, understanding the dose is crucial for patient safety.

The Alderson Rando phantom, representing a human equivalent, was employed for radiation exposure assessment. TLD-100 dosimeters were strategically placed in the thyroid region of the phantom's 9th section. Measurements were taken at 0.5, 1, 2, 4, and 8-minute intervals. The study was conducted at Istanbul University-Cerrahpasa, with the Alderson Rando phantom sourced from the Department of Radiation Oncology. Evaluation of research findings occurred at the Cekmece Nuclear Research Center.

The study revealed the average radiation dose impacting thyroid internal tissue as 0.760 mSv (0.5 minutes), 1.319 mSv (1 minute), 2.7345 mSv (2 minutes), 5.633 mSv (4 minutes), and 11.5595 mSv (8 minutes). The average radiation dose affecting thyroid skin tissue was found to be 1.587 mSv (0.5 minutes), 2.3905 mSv (1 minute), 5.0075 mSv (2 minutes), 9.8115 mSv (4 minutes), and 18.8635 mSv (8 minutes).

Minimizing radiation dose is crucial to reduce potential harm to patients. However, the absence of established reference values in the literature emphasizes the need for determining this dose, as no standardized benchmark currently exists. Annual radiation dose limits for various body parts exist, but establishing specific values for thyroid tissue during C-arm fluoroscopy is essential for enhancing patient safety in radiological procedures.

References

Tuncel, E. (2008). Klinik Radyoloji. Nobel & Güneş Tıp Kitabevleri.

BORA, H. (2001). Radyasyon Güvenliği. Ankara Sa, 001–008. https://doi.org/10.1501/ashd_0000000023

ŞEKER, S., ÇEREZCİ, O., Çevremizdeki Radyasyon ve Korunma Yöntemleri, Boğaziçi Üniversitesi Yayınları, İstanbul, 1997

ŞEKER, S., ÇEREZCİ, O., Radyasyon Kuşatması, Boğaziçi Üniversitesi Yayınevi, İstanbul, 2000.

Fidancı, İ., Tekin, O., Demirel, A. H., Arslan, İ., Dilber, S., Eren, Ş. Ü., & Gümüş, E. (2014). Radyasyon üreten Cihazların Kullanımı Ile Tiroid Kanseri Arası i̇lişkinin Değerlendirilmesi. Ankara Medical Journal, 14(3). https://doi.org/10.17098/amj.37721

de González, A. B., & Darby, S. (2004). Risk of cancer from Diagnostic X-rays: Estimates for the UK and 14 other countries. The Lancet, 363(9406), 345–351. https://doi.org/10.1016/s0140-6736(04)15433-0

HALL, E. J., & BRENNER, D. J. (2008). Cancer risks from Diagnostic Radiology. The British Journal of Radiology, 81(965), 362–378. https://doi.org/10.1259/bjr/01948454

KARATAŞLI, M., & Tahsin, Ö. Z. E. R. (2018). İş güvenliğinde dozimetreler. İstanbul Aydın Üniversitesi Dergisi, 10(1), 15-31.

Akkurt, I., & Malidarre, R. B. (2021a). Gamma photon-neutron attenuation parameters of marble concrete by MCNPX code. Radiation Effects and Defects in Solids. https://doi. org/10.1080/10420150.2021.1975708

Akkurt, I., & Tekin, H. O. (2020). Radiological parameters for bismuth oxide glasses using phy-X/PSD software. Emerging Materials Research, 9–3, 1020–1027. https:// doi.org/10.1680/jemmr.20.00209

Boodaghi Malidarre, R., Akkurt, ˙I., Gunoglu, K., & Akyıldırım, H. (2021b). Fast neutrons shielding properties for HAP-Fe2O3 composite materials. International Journal of Computational and Experimental Science and Engineering, 7(3), 143–145. https://doi. org/10.22399/ijcesen.1012039

Celen, Y. Y., Oncul, S., Narin, B., & Gunay, O. (2023). Measuring radon concentration and investigation of it’s effects on lung cancer. Journal of Radiation Research and Applied Sciences, 16(4), 100716.

Günay, O., Gündoğdu, Ö., Demir, M., Abuqbeitah, M., Yaşar, D., Aközcan, S., ... & Yarar, O. (2019). Determination of the radiation dose level in different slice computerized tomography. International Journal of Computational and Experimental Science and Engineering, 5(3), 119-123.

Günay, O., Sarihan, M., Abamor, E., & Yarar, O. (2019). Environmental radiation doses from patients undergoing Tc-99m DMSA cortical renal scintigraphy. International Journal of Computational and Experimental Science and Engineering, 5(2), 86-93

Günay, O., Özden, S., & Pehlivanoğlu, S. A. (2023). Assessing the Topsoil Contamination of Cesium-137 Environmental Fallout in Konya, Turkey: Spatial Distribution and Analysis. Water, Air, & Soil Pollution, 234(12), 763

Özden, S., Aközcan, S., & Günay, O. (2023). 137Cs in Soils from İstanbul (Turkey) Sampled 35 Years After Chernobyl. Environmental Forensics, 1-7.

Sen Baykal, D., Tekin, H., & Çakırlı Mutlu, R. (2021). An investigation on radiation shielding properties of borosilicate glass systems. International Journal of Computational and Experimental Science and Engineering, 7(2), 99–108. https://doi. org/10.22399/ijcesen.960151

Tekin, H. O., Cavli, B., Altunsoy, E. E., Manici, T., Ozturk, C., & Karakas, H. M. (2018). An investigation on radiation protection and shielding properties of 16 slice computed tomography (CT) facilities. International Journal of Computational and Experimental Science and Engineering, 4–2, 37–40. https://doi.org/10.22399/ ijcesen.408231

Lee, K., Lee, K. M., Park, M. S., Lee, B., Kwon, D. G., & Chung, C. Y. (2012). Measurements of surgeons' exposure to ionizing radiation dose during intraoperative use of C-arm fluoroscopy. Spine, 37(14), 1240-1244.

Radiation Products Design Inc. https://www.rpdinc.com/

GÜNAY, O., GÜNDOĞDU, Ö., DEMİR, M., TİMLİOĞLU İPER, H. S., KURU, İ., YAŞAR, D., AKÖZCAN, S., & YARAR, O. (2020). Determination of absorbed radiation dose levels of lenses thyroid and oral mucosa in computed tomography imagining: Phantom Study. Kocaeli Üniversitesi Sağlık Bilimleri Dergisi, 6(1), 23–27. https://doi.org/10.30934/kusbed.603335

Acquah, G.F., Kyeremeh, P.O., Doudoo, C.O., Ahiagbenyo, P., Edusa, C., & Beecham, K. (2017). Breast Dosimetry: A Phantom study between tangential wedge fields and multiple open field-in-field 3D conformal forward planning. International Journal of Scientific Research in Science and Technology, 3, 196-200.

BAŞARAN, H., GÜL, O. V., & Gökçen, İ. N. A. N. (2022). Farklı Radyoterapi Teknikleri İle Meme Işınlamalarında Alan Dışı Dozların TLD İle Dozimetrik Olarak İncelenmesi. Akdeniz Tıp Dergisi, 8(3), 270-275.

ŞAHMARAN, T., & BAYBURT, M. (2020). Pozitron Emisyon Tomografi–Bilgisayar Tomografi (PET-BT) uygulamalarında hastanın aldığı radyasyon dozunun belirlenmesi. Kafkas Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 13(1), 58-63.

Siewerdsen, J. H., Moseley, D. J., Burch, S., Bisland, S. K., Bogaards, A., Wilson, B. C., & Jaffray, D. A. (2005). Volume CT with a flat‐panel detector on a mobile, isocentric C‐arm: pre‐clinical investigation in guidance of minimally invasive surgery. Medical physics, 32(1), 241-254.

Gökharman, D. F., Aydın, S., & Koşar, P. N. (2016). Radyasyon Güvenliğinde Mesleki Olarak Bilmemiz Gerekenler. SDÜ SAĞLIK BİLİMLERİ DERGİSİ, 7(2), 35–35. https://doi.org/10.22312/sdusbed.261237

Dönmez, S. (2017). Radiation detection and measurement. Nuclear Medicine Seminars, 3(3), 172–177. https://doi.org/10.4274/nts.2017.018

Cecen, G. S. (2015). Radiation in the Orthopaedic Operating Theatre. ACTA ORTHOPAEDICA et TRAUMATOLOGICA TURCICA. https://doi.org/10.3944/aott.2015.14.0250

Downloads

Published

2024-02-26

How to Cite

Özlen, M. S., Cuma, A. B., Yazıcı, S. D., Yeğin, N., Demir, Özge, Aksoy, H., … Günay, O. (2024). Determination of Radiation Dose Level Exposed to Thyroid in C-Arm Scopy. IJASRaR, 1(1). Retrieved from https://ijasrar.com/index.php/ijasrar/article/view/13

Issue

Section

Articles

Most read articles by the same author(s)