Generative Artificial Intelligence to Optimize Lifting Lugs: Weight Reduction and Sustainability in AISI 304 Steel

Authors

  • Robinson García Universidad Internacional de Investigación México
  • Carlos Garzon
  • Juan Estrella

DOI:

https://doi.org/10.22399/ijasrar.22

Keywords:

Lifting lugs, Generative Artificial Intelligence, AISI 304 steel, Finite element analysis

Abstract

Some of the critical components in industrial lifting operations are lifting lugs, elements traditionally designed with conservative approaches that prioritize safety over material efficiency, resulting in oversized designs. This study proposes an innovative methodological framework that employs Generative Artificial Intelligence (GAI) to optimize these components. The material used is AISI 304 steel, which is economical and widely available, with the goal of reducing mass without compromising structural strength. By utilizing finite element analysis (FEA) simulations in Autodesk Inventor and genetic algorithms in Autodesk Fusion 360, a comparison was made between a traditional design based on the DIN 580 standard and optimized designs generated by the software. Three manufacturing methods were also considered: additive manufacturing, three-axis milling, and casting. The results demonstrated a mass reduction of up to 91% in the additive manufacturing scenario, along with improvements in the safety factor of up to 2.765 and a notable enhancement in stress distribution uniformity. Another significant finding was the decrease in maximum displacement under dynamic loading, from 0.0189 mm (standard-based design) to 0.004 mm (generatively optimized design), which indicates increased stiffness. This methodology not only overcomes the limitations of conventional approaches but also offers flexibility to adapt to various production processes, with both economic (20% savings in material per unit) and environmental (reduced carbon footprint) benefits. The study validates the potential of GAI to optimize simple components using readily accessible materials, offering a replicable framework for sectors such as renewable energy and electric automotive applications. Future research should include experimental validations and fatigue studies to further consolidate these advances in real industrial environments.

References

W. Min, Y. Liu, L. Cheng, Y. Sun, L. Qi, Y. Wan, M. Yu y Z. Sun. (2023). Efficient manufacturing techniques and connection failure analysis of CFRP lifting lug for main bearing structure. Engineering Failure Analysis, 151;107420. doi: https://doi.org/10.1016/j.engfailanal.2023.107420 DOI: https://doi.org/10.1016/j.engfailanal.2023.107420

C. Wang y J. Kim. (2018). Numerical analysis of distortions by using an incorporated model for. Journal of Mechanical Science and Technology, 32;5855-5862. doi: https://doi.org/10.1007/S12206-018-1134-4 DOI: https://doi.org/10.1007/s12206-018-1134-4

P. Mayencourt y C. Mueller. (2020). Hybrid analytical and computational optimization methodology for structural shaping: Material-efficient mass timber beams. Engineering Structures, 215;110532. doi: https://doi.org/10.1016/j.engstruct.2020.110532 DOI: https://doi.org/10.1016/j.engstruct.2020.110532

D. Raabe, (2019). Strategies for improving the sustainability of structural metals. Nature, 575;64-74. doi: https://doi.org/10.1038/s41586-019-1702-5 DOI: https://doi.org/10.1038/s41586-019-1702-5

C. D. Gutiérrez Sandoval, T. A. Takemoto Silva, B. A. Venegas Minchola, G. Vidondo Chafloc y J. R. Villanueva Ramos. (2024). Análisis de Factores Críticos de Éxito para la Implementación de Drones en el Sector Logístico: Revisión Sistemática. Gestión De Operaciones Industriales, 3(1);48-63. doi: https://doi.org/10.1089/3DP.2021.0008 DOI: https://doi.org/10.17268/goi4.0.2024.03

P. G. Enríquez Yépez, W. E. Lascano Tacuri, M. A. Lizano Jácome y J. M. Altamirano Hidalgo. (2024). Ingeniería de diseño y simulación asistida por inteligencia artificial. Reincisol, 3(6);494-2521. doi: https://doi.org/10.59282/reincisol.V3(6)2494-2521 DOI: https://doi.org/10.59282/reincisol.V3(6)2494-2521

R. William-Sobers, U. O. Agwu, S. Yamakawa y K. Shimada. (2024). Redesigning Aerospace Components Using a Coupled Topology Optimization and Lattice Generation Approach. 3D Printing and Additive Manufacturing. doi: https://doi.org/10.1089/3dp.2023.0168 DOI: https://doi.org/10.1089/3dp.2023.0168

F. Veiga, A. Suárez, A. Elder, I. Goenaga y J. Amondarain. (2023). Wire Arc Additive Manufacturing Process for Topologically Optimized Aeronautical Fixtures. 3D Printing and Additive Manufacturing, 10(1) doi: https://doi.org/10.1089/3DP.2021.0008 DOI: https://doi.org/10.1089/3dp.2021.0008

A. J. Valdeleón Alarcón, G. A. Rojas y F. Delgado Gómez. (2022). Rediseño y actualización de estructura de izamiento y traslado para la aeronave de vuelos de entrenamiento para la Escuela Militar de Aviación Marco Fidel Suárez,» Encuentro Internacional De Educación En Ingeniería. doi: https://doi.org/10.26507/paper.2449 DOI: https://doi.org/10.26507/paper.2449

E. Tyflopoulos y M. Steinert. (2022). A Comparative Study of the Application of Different Commercial Software for Topology Optimization. Applied Sciences, 12(2);611. doi: https://doi.org/10.3390/app12020611 DOI: https://doi.org/10.3390/app12020611

E. P. Duque, D. Villarreal y H. Rojas A. (2022). Computer tool with intelligent behavior for the optimal preliminary design in non-braced structural steel frame. Heliyon, 8(4) doi: https://doi.org/10.1016/j.heliyon.2022.e09260 DOI: https://doi.org/10.1016/j.heliyon.2022.e09260

J. E. Barbosa, I. H. García y V. García. (2023). Curvas límite de conformado en láminas de acero inoxidable AISI 304 utilizadas por el sector metalmecánico. Ingenieria y Competitividad, 25(3) doi: https://doi.org/10.25100/iyc.v25i3.12702 DOI: https://doi.org/10.25100/iyc.v25i3.12702

L. Borunda, M. Ladrón de Guevara, G. Pugliese, R. Claramunt, M. Muñoz y J. Anaya. (2020). Componentes Optimizados de Fabricación de Aditivos = Optimized Additive Manufacturing Building Components. ANALES DE EDIFICACIÖN, 6(2) doi: https://doi.org/10.20868/ADE.2020.4491 DOI: https://doi.org/10.20868/ade.2020.4491

R. J. Angulo Guerrero y D. J. García Camacho. (2023). Optimización de procesos de producción mediante el uso de algoritmos genéticos. REVISTA DE INVESTIGACIÓN INGENIERÍA Y SUS ALCANCES, 7(18);316. DOI: https://doi.org/10.33996/revistaingenieria.v7i18.109

Hafez, I. Y., & El-Mageed, A. A. A. (2025). Enhancing Digital Finance Security: AI-Based Approaches for Credit Card and Cryptocurrency Fraud Detection. International Journal of Applied Sciences and Radiation Research , 2(1). https://doi.org/10.22399/ijasrar.21 DOI: https://doi.org/10.22399/ijasrar.21

Fowowe, O. O., & Agboluaje, R. (2025). Leveraging Predictive Analytics for Customer Churn: A Cross-Industry Approach in the US Market. International Journal of Applied Sciences and Radiation Research , 2(1). https://doi.org/10.22399/ijasrar.20 DOI: https://doi.org/10.22399/ijasrar.20

M. Nivetha, J. Chockalingam, & A. Shaik Abdul Khadir. (2025). Hyper Capsule LSTM-Gated GAN with Bayesian Optimized SVM for Cloud-based Stock Market Price Prediction in Big Data Environments. International Journal of Computational and Experimental Science and Engineering, 11(2). https://doi.org/10.22399/ijcesen.1418 DOI: https://doi.org/10.22399/ijcesen.1418

Ibeh, C. V., & Adegbola, A. (2025). AI and Machine Learning for Sustainable Energy: Predictive Modelling, Optimization and Socioeconomic Impact In The USA. International Journal of Applied Sciences and Radiation Research , 2(1). https://doi.org/10.22399/ijasrar.19 DOI: https://doi.org/10.22399/ijasrar.19

Wang, F., & Zheng, S. (2025). Research on the Integration and Innovation of Artificial Intelligence in Intangible Cultural Heritage Illustration Creation. International Journal of Computational and Experimental Science and Engineering, 11(1). https://doi.org/10.22399/ijcesen.1127 DOI: https://doi.org/10.22399/ijcesen.1127

Olola, T. M., & Olatunde, T. I. (2025). Artificial Intelligence in Financial and Supply Chain Optimization: Predictive Analytics for Business Growth and Market Stability in The USA. International Journal of Applied Sciences and Radiation Research , 2(1). https://doi.org/10.22399/ijasrar.18 DOI: https://doi.org/10.22399/ijasrar.18

Boddupally JANAIAH, & Suresh PABBOJU. (2024). HARGAN: Generative Adversarial Network BasedDeep Learning Framework for Efficient Recognition of Human Actions from Surveillance Videos. International Journal of Computational and Experimental Science and Engineering, 10(4). https://doi.org/10.22399/ijcesen.587 DOI: https://doi.org/10.22399/ijcesen.587

Downloads

Published

2025-04-15

How to Cite

García, R., Carlos Garzon, & Juan Estrella. (2025). Generative Artificial Intelligence to Optimize Lifting Lugs: Weight Reduction and Sustainability in AISI 304 Steel. International Journal of Applied Sciences and Radiation Research , 2(1). https://doi.org/10.22399/ijasrar.22

Issue

Section

Articles