Human Migration and Human Migration Algorithmic Perspective

Authors

  • Mitat Uysal Doğuş University
  • Aynur Uysal Doğuş University
  • Elif Erçelik Doğuş University

DOI:

https://doi.org/10.22399/ijasrar.29

Keywords:

Human migration, Human Migration Optimization, Metaheuristic algorithm, Migration modelling, Algorithmic intelligence

Abstract

Human migration is a complex phenomenon driven by socioeconomic, political, environmental, and demographic factors. Understanding and modeling migration patterns have become vital for planning, humanitarian response, and sustainable development. In parallel, nature-inspired optimization algorithms have gained attention for solving complex real-world problems. One emerging algorithm, Human Migration Optimization (HMO), draws inspiration from the collective behavior of migrating populations and models optimal solutions by simulating the movement of agents toward better "settlements" under survival pressure. This paper presents a comprehensive review of human migration theories and introduces a mathematical foundation for the Human Migration Optimization algorithm. The proposed HMO framework is defined with mathematical equations and compared with other metaheuristic methods. The effectiveness of HMO is highlighted through its unique migration logic, selection pressure, and memory-based movement.

Author Biography

Aynur Uysal, Doğuş University

Software Engineering

References

[1]Castles, S., & Miller, M. J. (2009). The age of migration: International population movements in the modern world. Palgrave Macmillan.

[2]Massey, D. S. et al. (1993). Theories of international migration: a review and appraisal. Population and Deve-lopment Review, 19(3), 431–466. https://doi.org/10.2307/2938462 DOI: https://doi.org/10.2307/2938462

[3]Skeldon, R. (2013). Global migration: Demographic aspects and its relevance for development. United Nati-ons Department of Economic and Social Affairs.

[4]Yang, X. S. (2010). Nature-inspired metaheuristic algorithms. Luniver Press.

[5]Uysal, M. (2024). Human migration optimization: A novel metaheuristic algorithm. Journal of Artificial Intelligence, 45(2), 123–137.

[6]International Organization for Migration (IOM). (2020). World Migration Report 2020. https://publications.iom.int/system/files/pdf/wmr_2020.pdf

[7]Anderson, J. E. (2011). The gravity model. Annual Review of Economics, 3(1), 133–160. DOI: https://doi.org/10.1146/annurev-economics-111809-125114

[8]Epstein, J. M. (2006). Generative social science: Studies in agent-based computational modeling. Princeton University Press.

[9]Banerjee, A. et al. (2013). The diffusion of microfinance. Science, 341(6144). DOI: 10.1126/science.123649 DOI: https://doi.org/10.1126/science.1236498

[10]Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. In Proceedings of the IEEE International Conference on Neural Networks (Vol. 4, pp. 1942–1948). IEEE. https://doi.org/10.1109/ICNN.1995.488968 DOI: https://doi.org/10.1109/ICNN.1995.488968

[11]Holland, J. H. (1992). Adaptation in natural and artificial systems. MIT Press. DOI: https://doi.org/10.7551/mitpress/1090.001.0001

[12]Bonyadi, M. R., & Michalewicz, Z. (2017). Particle swarm optimization for single objective continuous spa-ce problems: A review. Swarm Intelligence. DOI: https://doi.org/10.1162/EVCO_r_00180

[13]Karaboga, D., & Basturk, B. (2007). Artificial bee colony (ABC) optimization algorithm. Journal of Global Optimization, 39(3), 459-471, https://doi.org/10.1007/s10898-007-9149-x DOI: https://doi.org/10.1007/s10898-007-9149-x

[14]Glover, F., & Kochenberger, G. A. (2003). Handbook of metaheuristics. Springer. DOI: https://doi.org/10.1007/b101874

[15]Shi, Y., & Eberhart, R. C. (1998). Parameter selection in particle swarm optimization. In V. W. Porto, N. Saravanan, D. Waagen, & A. E. Eiben (Eds.), Evolutionary programming VII (pp. 591–600). Lecture Notes in Computer Science, 1447. Springer. https://doi.org/10.1007/BFb0040810. DOI: https://doi.org/10.1007/BFb0040810

[16]Kirkpatrick, S., Gelatt, C. D., Jr., & Vecchi, M. P. (1983). Optimization by simulated annealing. Science, 220(4598), 671–680. https://doi.org/10.1126/science.220.4598.671 DOI: https://doi.org/10.1126/science.220.4598.671

[17]Mirjalili, S. (2016). Dragonfly Algorithm: A New Meta-heuristic Optimization Technique. Neural Computing and Applications, 27(4), 1053–1073. DOI: https://doi.org/10.1007/s00521-015-1920-1

[18]Dorigo, M., & Stützle, T. (2004). Ant colony optimization. MIT Press. DOI: https://doi.org/10.7551/mitpress/1290.001.0001

[19]Rashedi, E., Nezamabadi-Pour, H., & Saryazdi, S. (2009). GSA: Gravitational search algorithm. Information Sciences. DOI: https://doi.org/10.1016/j.ins.2009.03.004

[20]Deb, K. (2001). Multi-objective optimization using evolutionary algorithms. Wiley.

[21]Yang, X. S., & Deb, S. (2010). Engineering optimization by cuckoo search. Int. Journal of Mathematical Modelling and Numerical Optimization, 1(4), 330–343. DOI: https://doi.org/10.1504/IJMMNO.2010.035430

[22]Blum, C., & Roli, A. (2003). Metaheuristics in combinatorial optimization: Overview and conceptual com-parison. ACM Computing Surveys, 35(3), 268–308. https://doi.org/10.1145/937503.93750 DOI: https://doi.org/10.1145/937503.937505

[23]Salcedo-Sanz, S. (2009). A survey of repair methods used as constraint handling techniques in evolutionary algorithms. Computer Science Review, 3(3), 175–192. https://doi.org/10.1016/j.cosrev.2009.07.001 DOI: https://doi.org/10.1016/j.cosrev.2009.07.001

[24]Ghaidaa Saba Yousef, Hayder Dibs, & Ahmed Samir Naje. (2025). Environmental Assessment For Map-ping Land Degradation and Lands Changes Using Remotely Sensed Data with Geospatial Analysis. Inter-national Journal of Computational and Experimental Science and Engineering, 11(1). https://doi.org/10.22399/ijcesen.1045 DOI: https://doi.org/10.22399/ijcesen.1045

[25]Rahnamayan, S., Tizhoosh, H. R., & Salama, M. M. A. (2008). Opposition-based differential evolution. IEEE Transactions on Evolutionary Computation, 12(1), 64-79. doi: 10.1109/TEVC.2007.894200 DOI: https://doi.org/10.1109/TEVC.2007.894200

Downloads

Published

2025-05-02

How to Cite

Uysal, M., Uysal, A., & Erçelik, E. (2025). Human Migration and Human Migration Algorithmic Perspective. International Journal of Applied Sciences and Radiation Research , 2(1). https://doi.org/10.22399/ijasrar.29

Issue

Section

Articles